Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening
نویسندگان
چکیده
The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively-charged side-chains substituted at positions Gln574 and Glu581 in the pore-lining α3 to the enhanced hemolytic activity and ion-channel opening of CyaA-Hly that actually mimics the highly-active RTX (repeat-in-toxin) cytolysins.
منابع مشابه
Membrane-Pore Forming Characteristics of the Bordetella pertussis CyaA-Hemolysin Domain
Previously, the 126-kDa Bordetella pertussis CyaA pore-forming/hemolysin (CyaA-Hly) domain was shown to retain its hemolytic activity causing lysis of susceptible erythrocytes. Here, we have succeeded in producing, at large quantity and high purity, the His-tagged CyaA-Hly domain over-expressed in Escherichia coli as a soluble hemolytically-active form. Quantitative assays of hemolysis against ...
متن کاملSegments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin.
Bordetella adenylate cyclase toxin-hemolysin (CyaA, AC-Hly, or ACT) permeabilizes cell membranes by forming small cation-selective (hemolytic) pores and subverts cellular signaling by delivering into host cells an adenylate cyclase (AC) enzyme that converts ATP to cAMP. Both AC delivery and pore formation were previously shown to involve a predicted amphipathic alpha-helix(502-522) containing a...
متن کاملCharacterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates
Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin pro...
متن کاملCalcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores
Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into l...
متن کاملNegatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms ca...
متن کامل